EECE 455/632 – Cryptography and Network Security

HWK4 - SOLUTION

Question 1

Let *n* be an integer and *p* be a prime number. Explain why for all such *n* and *p*:

gcd(n, n+p) = 1 or p

Answer:

If a number divides n+p and n, this implies that this number divides n+p-n=p.

 \Rightarrow Since p is prime, gcd (n+p,n) = 1 or p., depending on whether p divides n or not.

Question 2

Using Fermat Theorem, find $5^{301} \mod 11$.

Answer:

11 is prime, so $a^{10} = 1 \pmod{11}$, for every a greater than 0. So $5^{301} = 5^{30*10} * 5 = 1^{30} * 5 = 5 \pmod{11}$

Question 3

Use Fermat Theorem to find a number X between 0 and 36, such that X^{109} is congruent to 8 modulo 37

(Don't use brute force to find x).

Answer: $x^{109} = x^{(36*3)+1} = 1^3 x = x \pmod{37}$: Fermat's little theorem Hence, $x=8 \pmod{37}$, x=8

Question 4

Use Euler Theorem to find a number a between 0 and 9 such that a is congruent to 3⁵⁰⁰ modulo 10 (Note that this is the same as the last digit of the decimal expansion of 3⁵⁰⁰).

Answer:

A=3⁵⁰⁰(mod10). $\Phi(10)=\phi(2) \Phi(5)=1*4=4$ Hence, a= $(3^4)^{125}=1^{125}=1 \pmod{10}$ Therefore, a=1.

Question 5

Prove the following: If *p* is prime, then $\phi(p^i) = p^i - p^{i-1}$. Hint: what numbers have a factor in common with p^i ? **Answer:** Only the multiple of p have common factors with p_i given that p is prime Then in p^i 's residues, there are p^{i-1} multiples of p Hence, $\phi(p^i) = p^i - p^{i-1}$

If gcd(m,n) = 1, then we can show that $\phi(mxn) = \phi(m)x\phi(n)$. Also, we know that for a prime p, $\phi(p) = p - 1$; and $\phi(p^i) = p^i - p^{i-1}$ Given these properties, we can easily determine $\phi(n)$ for any n. Determine: $\phi(61)$; $\phi(62)$; $\phi(63)$; $\phi(64)$

Answer:

 $\Phi(61) = 61-1 = 60 \text{ since } 61 \text{ is prime.}$ $\Phi(62) = \Phi(31)^* \Phi(2) = 30^*1 = 30.$ $\Phi(63) = \Phi(3^2)^* \Phi(7)$ $\Phi(3^2) = 3^2 - 3^1 = 6$ $\Phi(7) = 6, \text{ since } 7 \text{ is prime}$ $\Phi(63) = 6^*6 = 36$ $\Phi(64) = \Phi(2^6) = 2^6 - 2^5 = 32$

Question 7

Use Chinese Remainder Theorem to solve for X.

 $X \equiv 2 \pmod{3};$ $X \equiv 3 \pmod{5};$ $X \equiv 2 \pmod{7}$

Answer:

 $M_1 = \frac{3 * 5 * 7}{3} = 35$ $M_1^{-1} = 2^{-1} \equiv 2 \pmod{3}$ $c_1 = 35 * 2 = 70$

$$M_{2} = \frac{3 * 5 * 7}{5} = 21$$

$$M_{2}^{-1} = 1^{-1} \equiv 1 \pmod{5}$$

$$c_{2} = 21 * 1 = 21$$

 $M_{3} = \frac{3 * 5 * 7}{7} = 15$ $M_{3}^{-1} = 1^{-1} \equiv 1 \pmod{7}$ $c_{3} = 15 * 1 = 15$ then $X \equiv 2 * 70 + 3 * 21 + 2 * 15 \mod{105}$ therefore, X=2

Perform encryption and decryption using RSA for the following:

- a. p=3; q=13; e=5; M=10
- b. p=11; q=7; e=11; M=7

Answer:

a- PU{e,n}, PR{d,n}. p=3, q=13. n=p*q=39 $\varphi(n)=(p-1)*(q-1)=2x12=24$ e=5, e.d= 1 mod24; d is multiplicative inverse of e mod24. d=5.

```
C=M^{e} \mod n = 10^{5} \mod 39 = 4
```

 $M=C^{d} \mod n=4^{5} \mod 39=10$

b- p=11, q=7 n=p*q=11*7=77 $\varphi(n)=(p-1)(q-1)=60$ e=11 $e.d=1 \mod 60$; d is multiplicative inverse of e mod 60 d = 11. $C=M^{e} \mod n = 7^{11} \mod 77=7$ $M=C^{d} \mod n = 7^{11} \mod 77 = 7$

Question 9

In RSA you intercepted the ciphertext C = 8 sent to a user whose public key e = 13, n=33. What is the plaintext M?

Answer:

```
M \equiv C^{d} \pmod{n}, \text{ with } d \equiv e^{-1} \pmod{\emptyset} (n) \equiv 13^{-1} \pmod{\emptyset} (33)
= 13-1 (mod 20) = 17 (mod 20)
M \equiv 8^{17} \pmod{33} \equiv 2 \pmod{33}
```

Question 10

In RSA, the public key of a user is e=31 and n=3599. What is the private key of the user? (Use trial and error to find p and q)

Answer:

```
N=3599, iterating we find that p=59 and q=61
Therefore, \phi(n)=(59-1)(61-1)=3480
d is the multiplicative inverse of e mod3480; e=31
Then d=3031
PU{31,3599}
PR{3031,3599}
```

Use the fast exponentiation algorithm to determine 6^{477} mod 2345.

Answer:

477 = 111011101

i	8	7	6	5	4	3	2	1	0
bi	1	1	1	0	1	1	1	0	1
С	1	3	7	14	29	59	119	238	477
f	6	316	881	2311	2246	181	1931	211	2141

Question 12

Consider a Diffie-Hellman scheme with a common prime q = 13, and a primitive root α = 7.

- a. Show that 7 is a primitive root of 13.
- b. If Alice has a public key $Y_A = 5$, what is Alice's private key X_A ?
- c. If Bob has a public key $Y_B = 12$, what is the secret key shared with Alice?

Answer:

7 is a primitive root modulo 13 if and only if $7^{12} \equiv 1 \pmod{13}$ and 7^d not congruent to 1 (mod 13) for every d such that d divides 12.

 $7^{1} \equiv 7 \pmod{13}$ $7^{2} \equiv 10 \pmod{13}$ $7^{3} \equiv 5 \pmod{13}$ $7^{4} \equiv 9 \pmod{13}$ $7^{6} \equiv 12 \pmod{13}$ $7^{12} \equiv 1 \pmod{13}$ So 7 is a primitive root modulo 13.

b-
$$Y_A = 5$$
, $Y_A = \alpha^x \mod q$

 $5 = 7^{x} \mod 13$ Using the above table, we find out that $x_{A} = 3$

a- $Y_B = 12$ $K_{AB} = Y_B^{Xa} \mod q$ $K^{AB} = 12^3 \mod 13 = 12$

Consider ElGamal scheme with a common prime q = 71 and a primitive root α = 7.

- a. If B has public key $Y_B = 3$ and A chose the random integer k = 2, what is the ciphertext of M = 30?
- b. If A now chooses a different value of k so that the encoding of M = 30 is C = (59, C_2), what is the integer C_2 ?

Answer:

```
One time key K=YBr modq

K=32mod71= 9 mod71

C1=a^r \mod 7^2 \mod 71= 49 \mod 71=49

C2=K*M modq ; where M=30

C2=9*30 mod71 = 57

M is encrypted to (C1,C2) = (49,57)
```

```
b- C1 = 59 = ar mod q = 7k mod 71
k = 3
K = YBk mod q = 33 mod 71 = 27
So C2 = k × M mod q = 27 × 30 mod 71 = 29
C2 = 29
```

Question 14

The cryptosystem parameters of ECC scheme are $E_{11}(1, 6)$ and G = (2, 7). B's secret key is $n_B = 3$.

- a. Find B's public key P_B.
- b. A wishes to encrypt the message $P_m = (10, 9)$ and choose a random value k = 4. Determine the ciphertext C_m .
- c. Show how to recover P_{m} from $\mathsf{C}_{\mathsf{m}}.$

Answer:

PB = 3(2,7)
m2 =
$$\frac{3x_1^2 + a}{2y_1} = \frac{3 \times 2^2 + 1}{2 \times 7} = \frac{13}{14} \equiv 2 \times 3 - 1 \equiv 2 \times 4 = 8$$

x2 = m2² - x1 - x1 = 8² - 2 × 2 = 60 $\equiv 5$
y2 = m2 (x1 - x2) - y1 = 8 × (2-5) - 7 = -31 $\equiv 2$

$$PB = (2,7) + (5,2)$$

$$m3 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 7}{5 - 2} = \frac{-5}{3} \equiv -5 \times 3 - 1 \equiv -5 \times 4 \equiv 2$$

$$x3 = m3^2 - x1 - x2 = 2 \times 2 - 2 - 5 = -3 \equiv 8$$

$$y3 = m3 (x1 - x3) - y1 = 2(2 - 8) - 7 = -19 \equiv 3$$

$$PB = 3(2,7) = (8,3)$$

b- kG = 4(2,7) = 2(5,2)
m =
$$\frac{3 \times 5^2 + 1}{2 \times 2}$$
 = 76 × 4-1 = 10 × 3 = 8
x = 8² - 2 × 5 = 54 = 10
y = 8 × (5-10) - 2 = -42 = 2
kG = (10,2)
kPB = 4(8,3)
m = $\frac{3 \times 8^2 + 1}{2 \times 3}$ = 6 × 6-1 = 1
x = 1² - 8 - 8 = -15 = 7
y = 1(8-7) - 3 = -2 = 9
kPB = 2(7,9)
m = $\frac{3 \times 7^2 + 1}{2 \times 3}$ = 5 × 7-1 = 40 = 7
x = 7² - 7 - 7 = 35 = 2
y = 7(7-2) - 9 = 26 = 4
kPB = (2,4)
Pm + kPB = (10,9) + (2,4)
m = $\frac{4-9}{2-10}$ = $\frac{-5}{-8}$ = 6 × 3-1 = 6 × 4 = 2
x = 2² - 10 - 2 = -8 = 3
y = 2(10-3) - 9 = 5
Pm + kPB = (3,5)
Cm = {(10,2), (3,5)}
c- Pm = (Pm + kPB) - nB(kG) = (3,5) - 3(10,2)
m = $\frac{3 \times 10^2 + 1}{2 \times 2}$ = $\frac{4}{4}$ = 1
x = 1² - 10 - 10 = -19 = 3
y = 1(10-3) - 2 = 5
2(10,2) = (3,5)
m = $\frac{5-2}{3-10}$ = $\frac{3}{4}$ = 3 × 3 = 9
x = 9² - 10 - 3 = 68 = 2
y = 9(10-2) - 2 = 70 = 4
3(10,2) = (2,4)
-3(10,2) = -(2,4) = (2,-4) = (2,7)
Pm = (3,5) + (2,7)
m = $\frac{7-5}{2-3}$ = $\frac{2}{-1}$ = -2 = 9
x = 9² - 3 - 2 = 76 = 10
y = 9(3-10) - 5 = -68 = 9
Pm = (10,9)