# EECE 455/632 - Cryptography and Network Security 

## HWK4-SOLUTION

## Question 1

Let $n$ be an integer and $p$ be a prime number. Explain why for all such $n$ and $p$ :

$$
\operatorname{gcd}(n, n+p)=1 \text { or } p
$$

## Answer:

If a number divides $\mathrm{n}+\mathrm{p}$ and n , this implies that this number divides $\mathrm{n}+\mathrm{p}-\mathrm{n}=\mathrm{p}$.
$\Rightarrow$ Since p is prime, $\operatorname{gcd}(\mathrm{n}+\mathrm{p}, \mathrm{n})=1$ or p ., depending on whether p divides n or not.

## Question 2

Using Fermat Theorem, find $5^{301} \bmod 11$.
Answer:
11 is prime, so $\mathrm{a}^{10}=1(\bmod 11)$, for every a greater than 0 .
So $5^{301}=5^{30 * 10} * 5=1^{30} * 5=5(\bmod 11)$

## Question 3

Use Fermat Theorem to find a number $X$ between 0 and 36 , such that $X^{109}$ is congruent to 8 modulo 37 (Don't use brute force to find x ).
Answer:
$x^{109}=x^{(36 * 3)+1}=1^{3} x=x(\bmod 37):$ Fermat's little theorem
Hence, $x=8(\bmod 37), x=8$

## Question 4

Use Euler Theorem to find a number $a$ between 0 and 9 such that $a$ is congruent to $3^{500}$ modulo 10
(Note that this is the same as the last digit of the decimal expansion of $3^{500}$ ).
Answer:
$\mathrm{A}=3^{500}(\bmod 10) . \Phi(10)=\varphi(2) \Phi(5)=1 * 4=4$
Hence, $a=\left(3^{4}\right)^{125}=1^{125}=1(\bmod 10)$
Therefore, $\mathrm{a}=1$.

## Question 5

Prove the following:
If $p$ is prime, then $\boldsymbol{\phi}\left(\boldsymbol{p}^{\boldsymbol{i}}\right)=\boldsymbol{p}^{\boldsymbol{i}}-\boldsymbol{p}^{\boldsymbol{i}-1}$.
Hint: what numbers have a factor in common with $p^{i}$ ?
Answer:
Only the multiple of $p$ have common factors with $p_{i}$ given that $p$ is prime
Then in $p^{i}$ s residues, there are $p^{i-1}$ multiples of $p$
Hence, $\varphi\left(p^{i}\right)=p^{i}-p^{i-1}$

## Question 6

If $\operatorname{gcd}(m, n)=1$, then we can show that $\phi(m \times n)=\boldsymbol{\phi}(\boldsymbol{m}) \times \boldsymbol{\phi}(n)$.
Also, we know that for a prime p, $\boldsymbol{\phi}(\boldsymbol{p})=\boldsymbol{p}-\mathbf{1}$; and $\boldsymbol{\phi}\left(\boldsymbol{p}^{i}\right)=\boldsymbol{p}^{\boldsymbol{i}}-\boldsymbol{p}^{\boldsymbol{i}-1}$
Given these properties, we can easily determine $\boldsymbol{\phi}(\boldsymbol{n})$ for any n.
Determine: $\boldsymbol{\phi}(61) ; \boldsymbol{\phi}(62) ; \boldsymbol{\phi}(63) ; \boldsymbol{\phi}(64)$
Answer:
$\Phi(61)=61-1=60$ since 61 is prime.
$\Phi(62)=\Phi(31) * \Phi(2)=30 * 1=30$.
$\Phi(63)=\Phi\left(3^{2}\right)^{*} \Phi(7)$
$\Phi\left(3^{2}\right)=3^{2}-3^{1}=6$
$\Phi(7)=6$, since 7 is prime
$\Phi(63)=6 * 6=36$
$\Phi(64)=\Phi\left(2^{6}\right)=2^{6}-2^{5}=32$

## Question 7

Use Chinese Remainder Theorem to solve for $X$.

$$
x \equiv 2(\bmod 3) ; \quad x \equiv 3(\bmod 5) ; \quad x \equiv 2(\bmod 7)
$$

## Answer:

$\mathrm{M}_{1}=\frac{3 * 5 * 7}{3}=35$
$\mathrm{M}_{1}{ }^{-1}=2^{-1} \equiv 2(\bmod 3)$
$\mathrm{c}_{1}=35 * 2=70$
$\mathrm{M}_{2}=\frac{3 * 5 * 7}{5}=21$
$\mathrm{M}_{2}{ }^{-1}=1^{-1} \equiv 1(\bmod 5)$
$\mathrm{c}_{2}=21 * 1=21$
$\mathrm{M}_{3}=\frac{3 * 5 * 7}{7}=15$
$\mathrm{M}_{3}^{-1}=1^{-1} \equiv 1(\bmod 7)$
$\mathrm{c}_{3}=15 * 1=15$
then $\mathrm{X} \equiv 2 * 70+3 * 21+2 * 15 \bmod 105$
therefore, $\mathrm{X}=2$

## Question 8

Perform encryption and decryption using RSA for the following:
a. $p=3 ; q=13 ; e=5 ; M=10$
b. $p=11 ; q=7 ; e=11 ; M=7$

Answer:
a- $\operatorname{PU}\{\mathrm{e}, \mathrm{n}\}, \operatorname{PR}\{\mathrm{d}, \mathrm{n}\} . \quad \mathrm{p}=3, \mathrm{q}=13 . \mathrm{n}=\mathrm{p}^{*} \mathrm{q}=39 \quad \varphi(\mathrm{n})=(\mathrm{p}-1)^{*}(\mathrm{q}-1)=2 \times 12=24$
$\mathrm{e}=5, \mathrm{e} . \mathrm{d}=1 \bmod 24 ; \mathrm{d}$ is multiplicative inverse of $\mathrm{e} \bmod 24 . \quad \mathrm{d}=5$.
$\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}=10^{5} \bmod 39=4$
$\mathrm{M}=\mathrm{C}^{\mathrm{d}} \bmod \mathrm{n}=4^{5} \bmod 39=10$
b- $p=11, q=7$
$\mathrm{n}=\mathrm{p} * \mathrm{q}=11 * 7=77$
$\varphi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)=60$
$\mathrm{e}=11$
e. $d=1 \bmod 60 ; d$ is multiplicative inverse of $e \bmod 60$
$\mathrm{d}=11$.
$\mathrm{C}=\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}=7^{11} \bmod 77=7$
$\mathrm{M}=\mathrm{C}^{\mathrm{d}} \bmod \mathrm{n}=7^{11} \bmod 77=7$

## Question 9

In RSA you intercepted the ciphertext $\mathrm{C}=8$ sent to a user whose public key $\mathrm{e}=13, \mathrm{n}=33$. What is the plaintext M ?
Answer:

$$
\begin{aligned}
\mathrm{M} & \equiv \mathrm{C}^{\mathrm{d}}(\bmod n), \text { with } \mathrm{d} \equiv \mathrm{e}^{-1}(\bmod \emptyset(\mathrm{n})) \equiv 13^{-1}(\bmod \emptyset(33)) \\
& \equiv 13-1(\bmod 20) \equiv 17(\bmod 20) \\
\mathrm{M} & \equiv 8^{17}(\bmod 33) \equiv 2(\bmod 33)
\end{aligned}
$$

## Question 10

In RSA, the public key of a user is $\mathrm{e}=31$ and $\mathrm{n}=3599$. What is the private key of the user? (Use trial and error to find $p$ and $q$ )
Answer:
$\mathrm{N}=3599$, iterating we find that $\mathrm{p}=59$ and $\mathrm{q}=61$
Therefore, $\phi(\mathrm{n})=(59-1)(61-1)=3480$
d is the multiplicative inverse of $\mathrm{e} \bmod 3480 ; \mathrm{e}=31$
Then $\mathrm{d}=3031$
PU $\{31,3599\}$
$\operatorname{PR}\{3031,3599\}$

## Question 11

Use the fast exponentiation algorithm to determine $6^{477} \bmod 2345$.
Answer:
$477=111011101$

| $\mathbf{i}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{b}_{\mathbf{i}}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| $\mathbf{c}$ | 1 | 3 | 7 | 14 | 29 | 59 | 119 | 238 | 477 |
| $\mathbf{f}$ | 6 | 316 | 881 | 2311 | 2246 | 181 | 1931 | 211 | 2141 |

## Question 12

Consider a Diffie-Hellman scheme with a common prime $q=13$, and a primitive root $\alpha=7$.
a. Show that 7 is a primitive root of 13 .
b. If Alice has a public key $Y_{A}=5$, what is Alice's private key $X_{A}$ ?
c. If Bob has a public key $Y_{B}=12$, what is the secret key shared with Alice?

## Answer:

7 is a primitive root modulo 13 if and only if $7^{12} \equiv 1(\bmod 13)$ and $7^{d}$ not congruent to 1 $(\bmod 13)$ for every d such that divides 12 .
$7^{1} \equiv 7(\bmod 13)$
$7^{2} \equiv 10(\bmod 13)$
$7^{3} \equiv 5(\bmod 13)$
$7^{4} \equiv 9(\bmod 13)$
$7^{6} \equiv 12(\bmod 13)$
$7^{12} \equiv 1(\bmod 13)$
So 7 is a primitive root modulo 13 .
b- $\mathrm{Y}_{\mathrm{A}}=5, \mathrm{Y}_{\mathrm{A}}=\alpha^{\mathrm{x}}$ modq
$5=7^{x} \bmod 13$
Using the above table, we find out that $\mathrm{x}_{\mathrm{A}}=3$
a- $Y_{B}=12$
$\mathrm{K}_{\mathrm{AB}}=\mathrm{Y}_{\mathrm{B}}{ }^{\mathrm{Xa}}$ modq
$\mathrm{K}^{\mathrm{AB}}=12^{3} \bmod 13=12$

## Question 13

Consider ElGamal scheme with a common prime $\mathrm{q}=71$ and a primitive root $\alpha=7$.
a. If $B$ has public key $Y_{B}=3$ and $A$ chose the random integer $k=2$, what is the ciphertext of $\mathrm{M}=30$ ?
b. If $A$ now chooses a different value of $k$ so that the encoding of $M=30$ is $C=\left(59, C_{2}\right)$, what is the integer $\mathrm{C}_{2}$ ?
Answer:
One time key $\mathrm{K}=\mathrm{YBr}$ modq
$\mathrm{K}=32 \bmod 71=9 \bmod 71$
$\mathrm{C} 1=\mathrm{a}^{\mathrm{r}} \operatorname{modq}=7^{2} \bmod 71=49 \bmod 71=49$
$\mathrm{C} 2=\mathrm{K} * \mathrm{M}$ modq ; where $\mathrm{M}=30$
$\mathrm{C} 2=9 * 30 \bmod 71=57$
M is encrypted to $(\mathrm{C} 1, \mathrm{C} 2)=(49,57)$
b- $\mathrm{C} 1=59=$ ar $\bmod \mathrm{q}=7 \mathrm{k} \bmod 71$
$\mathrm{k}=3$
$\mathrm{K}=\mathrm{YBk} \bmod \mathrm{q}=33 \bmod 71=27$
So $\mathrm{C} 2=\mathrm{k} \times \mathrm{M} \bmod \mathrm{q}=27 \times 30 \bmod 71=29$
$\mathrm{C} 2=29$

## Question 14

The cryptosystem parameters of ECC scheme are $E_{11}(1,6)$ and $G=(2,7)$. $B$ 's secret key is $n_{B}=3$.
a. Find B's public key $\mathrm{P}_{\mathrm{B}}$.
b. A wishes to encrypt the message $P_{m}=(10,9)$ and choose a random value $k=4$. Determine the ciphertext $\mathrm{C}_{\mathrm{m}}$.
c. Show how to recover $P_{m}$ from $C_{m}$.

Answer:

$$
\begin{aligned}
& \mathrm{PB}=3(2,7) \\
& \mathrm{m} 2=\frac{3 \mathrm{x}_{1}{ }^{2}+\mathrm{a}}{2 \mathrm{y}_{1}}=\frac{3 \times 2^{2}+1}{2 \times 7}=\frac{13}{14} \equiv 2 \times 3-1 \equiv 2 \times 4=8 \\
& \mathrm{x} 2=\mathrm{m} 2^{2}-\mathrm{x} 1-\mathrm{x} 1=8^{2}-2 \times 2=60 \equiv 5 \\
& \mathrm{y} 2=\mathrm{m} 2(\mathrm{x} 1-\mathrm{x} 2)-\mathrm{y} 1=8 \times(2-5)-7=-31 \equiv 2 \\
& \mathrm{~PB}=(2,7)+(5,2) \\
& \mathrm{m} 3=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{2-7}{5-2}=\frac{-5}{3} \equiv-5 \times 3-1 \equiv-5 \times 4 \equiv 2 \\
& \mathrm{x} 3=\mathrm{m} 3^{2}-\mathrm{x} 1-\mathrm{x} 2=2 \times 2-2-5=-3 \equiv 8 \\
& \mathrm{y} 3=\mathrm{m} 3(\mathrm{x} 1-\mathrm{x} 3)-\mathrm{y} 1=2(2-8)-7=-19 \equiv 3 \\
& \mathrm{~PB}=3(2,7)=(8,3)
\end{aligned}
$$

$\mathrm{b}-\mathrm{kG}=4(2,7)=2(5,2)$

$$
\begin{aligned}
& \mathrm{m}=\frac{3 \times 5^{2}+1}{2 \times 2}=76 \times 4-1 \equiv 10 \times 3 \equiv 8 \\
& \mathrm{x}=8^{2}-2 \times 5=54 \equiv 10 \\
& \mathrm{y}=8 \times(5-10)-2=-42 \equiv 2
\end{aligned}
$$

$$
\mathrm{kG}=(10,2)
$$

$$
\mathrm{kPB}=4(8,3)
$$

$$
\mathrm{m}=\frac{3 \times 8^{2}+1}{2 \times 3} \equiv 6 \times 6-1=1
$$

$$
x=1^{2}-8-8=-15 \equiv 7
$$

$$
y=1(8-7)-3=-2 \equiv 9
$$

$$
\mathrm{kPB}=2(7,9)
$$

$$
\mathrm{m}=\frac{3 \times 7^{2}+1}{2 \times 3} \equiv 5 \times 7-1=40 \equiv 7
$$

$$
x=7^{2}-7-7=35 \equiv 2
$$

$$
y=7(7-2)-9=26 \equiv 4
$$

$$
\mathrm{kPB}=(2,4)
$$

$$
\mathrm{Pm}+\mathrm{kPB}=(10,9)+(2,4)
$$

$$
\mathrm{m}=\frac{4-9}{2-10}=\frac{-5}{-8} \equiv 6 \times 3-1=6 \times 4 \equiv 2
$$

$$
x=2^{2}-10-2=-8 \equiv 3
$$

$$
y=2(10-3)-9=5
$$

$$
\mathrm{Pm}+\mathrm{kPB}=(3,5)
$$

$\mathrm{Cm}=\{(10,2),(3,5)\}$
$\mathrm{c}-\mathrm{Pm}=(\mathrm{Pm}+\mathrm{kPB})-\mathrm{nB}(\mathrm{kG})=(3,5)-3(10,2)$
$\mathrm{m}=\frac{3 \times 10^{2}+1}{2 \times 2} \equiv \frac{4}{4}=1$
$\mathrm{x}=1^{2}-10-10=-19 \equiv 3$
$y=1(10-3)-2=5$

$$
2(10,2)=(3,5)
$$

$$
\mathrm{m}=\frac{5-2}{3-10} \equiv \frac{3}{4}=3 \times 3=9
$$

$$
x=9^{2}-10-3=68 \equiv 2
$$

$$
y=9(10-2)-2=70 \equiv 4
$$

$$
\begin{aligned}
& 3(10,2)=(2,4) \\
& \quad-3(10,2)=-(2,4)=(2,-4) \equiv(2,7)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pm}=(3,5)+(2,7) \\
& \mathrm{m}=\frac{7-5}{2-3}=\frac{2}{-1}=-2 \equiv 9 \\
& \mathrm{x}=9^{2}-3-2=76 \equiv 10 \\
& \mathrm{y}=9(3-10)-5=-68 \equiv 9 \\
& \operatorname{Pm}=(10,9)
\end{aligned}
$$

